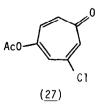

A VERSATILE NEW STRATEGY FOR THE SYNTHESIS OF TROPOLONES

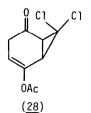
Martin G. Banwell* and René Onrust Department of Chemistry, The University of Auckland, Private Bag, Auckland, New Zealand

Summary: Swern-type oxidation of various 7-halogenobicyclo[4.1.0]heptane-2.3- or -3.4diols affords the corresponding bicyclic diketones which undergo in situ ring expansion and loss of hydrogen halide to give α -tropolones in high yield. The quantitative conversion of the isolable 1,4-diketone 26 into the γ -tropolone acetate 27 has been achieved.

Despite the continued interest in the chemistry of tropolones (hydroxycycloheptatrienones) and their derivatives.¹ the development of a general route¹⁻³ to these nonbenzenoid conjugated carbocycles remains a challenging problem.^{2,3} The recent isolation of the complex tropolone natural products Grandirubrine. 4 Imerubrine. 4 and Manicol⁵ and the resulting interest in their total synthesis⁴ serves to emphasize the need for mild, efficient, regio-controlled, and direct methods for the construction of this ring system. Herein, we describe a new synthesis of tropolones which has these attributes and proceeds from readily accessible starting materials.

On the basis of our earlier observations⁶ that 7-halogenobicyclo[4.1.0]heptenones are excellent precursors to tropones (cycloheptatrienones) we decided to investigate the possibility that 7-halogenobicyclo[4.1.0] heptanediones might undergo comparable ring-expansion reactions to give tropolones. Consider, for example, the bicyclic diketone 1. Two-fold keto to enol tautomerisation of this compound would give the


norcaradiene 2 which on electrocyclic ring-opening^{2,6} would produce the cycloheptatriene 3. Loss of the elements of hydrogen bromide from 3 should then afford 5bromotropolone (<u>4</u>). Related processes can be envisaged for bicyclic diketones of the type $\underline{5} - \underline{7}$ (X = Cl or Br).


(6)

(5)

The oxidation of the corresponding diols appeared to offer a direct route to the required diketones and the results of this approach are shown in the table.⁷ Thus, treatment of the <u>vic</u>-diols <u>8</u> - 10^{8a} under Swern-type oxidation conditions⁹ [2.0 - 3.0 mol. equiv. $(CF_3CO)_2O$, \geq 3.0 mol. equiv. $(CH_3)_2SO$, -60°C, 1.5 h; then <u>ca</u>. 7.0 mol. equiv. $(CH_3CH_2)_3N$, -60°C, 1.5 h] afforded the tropolones <u>19¹⁰ 20</u>, and <u>21</u>, respectively, in high yield. This oxidation procedure does not appear to be sensitive to the geometry of the hydroxyl groups, since analogous treatment of each of the isomeric diols <u>11</u>, ^{8a} <u>12</u>, ^{8b} and <u>13^{8b} gave tropolone <u>4</u>¹¹ in similar yield. Oxidation of compound <u>14^{8b} delivered β -thujaplicin (<u>22</u>)^{1a}. Evidence for the intermediacy of 7-halogenobicyclo[4.1.0]heptane-3,4-diones (e.g. <u>1</u>) in these conversions stems from the observation that treatment of the tricyclic diol <u>15^{8a}</u> under the same conditions yields the α -hydroxy enone <u>23</u>. Reaction of diol <u>16^{8a}</u> with 2.1 equivalents of the Swern-oxidant afforded the mono-enolic tautomer <u>24</u> of α -diketone <u>5</u> (X = Br) as well as tropolone <u>25</u>.¹² In contrast, treatment of compound <u>16</u> with 4.1 equivalents of the same oxidant gave <u>25</u> exclusively.</u></u>

While attempts to prepare the bicyclic 1,3-diketone <u>6</u> (X = Cl) (and thence the corresponding β -tropolone) by oxidation of the 1,3-diol <u>17</u>^{8b} have not been successful, the isolable 1,4-diketone <u>26</u> was readily obtained by oxidation (3.6 equiv. pyridinium chlorochromate, CH₂Cl₂, 20°C, 18h, 100%) of diol <u>18</u>.^{8b} Treatment of compound <u>26</u> under conditions employed for enol-acetate formation¹³ [(CH₃CO)₂O, CH₂Cl₂, 1 drop 60% aqueous HClO₄, 20°C, 3 h] afforded the γ -tropolone acetate <u>27</u> (100%) (m.p. = 55-56°C) presumably <u>via</u> intermediate <u>28</u>.

(7)

Table: Oxidation Reactions ^a of 7-Halogenobicyclo[4.1.0]heptanediols			
Diol	Product(s)	Yield ^b (X)	m.p. data (°C) diol; product(s)
	HO CH_3	79	138-139; 180-182 (sealed tube), lit. ¹⁰ 180-182
H0 H0 H0 $(CH_3)_3Si$ $(CH_3)_3Si$ $(CH_3)_3Si$ $(CH_3)_3Si$ $(CH_3)_3Si$		92	145-146; 157-158
H0 10	H0Si(CH ₃) ₃ 21	81	155-156.5; 115.5- 117
HO Br Br 11	H0 Br 4	75	142-143; 192-193 (sealed tube), lit. ¹¹ 189-190
H0 Br Br 12	4~	73	102-103
HO HO HO C	4 	75	103-103.5
		78	oil; oil
		86	125.5-127; 131-133
HO. Br Br	HO Br Br OH	73:13 ^C 0:90 ^d	73-74.5; 112-114; 86-87, lit. ¹² 85-86
	24 25 Br complex mixture		147-149
		100	123-123.5; 56.5- 57.5
^a See text for oxidation conditions. ^b Of isolated, pure products. ^c Using 2.1 equiv. of oxidant. ^d Using 3.1 equiv. of oxidant.			

The formation of both possible α -tropolone alkyl ethers on alkylation of unsymmetrical tropolones is a well-known phenomenon. 1 and represents a long-standing problem in the regio-controlled synthesis of various troponoid compounds including colchicine.^{2,3} The following extension of the present work suggests a useful solution to this problem. Thus, methylation $[K_2C0_3, (CH_3)_2C0, (CH_3)_2S0_4, 20^{\circ}C, 5.0 h]$ of compound 24 afforded α -methoxy enone 29 (90%) (m.p. 90-92°C) which underwent basepromoted (K_2CO_3 , CH_3OH , 20°C, 1.0 h) conversion into the a-tropolone methyl ether <u>30</u> (80%) (m.p. = 129.5-131.5°C; 1it.¹⁴ 130-131.5°C).¹⁵

We are attempting to apply these observations to the synthesis of various structurally interesting troponoid compounds including colchicine. Results will be reported in due course.

References and Notes

- 1. For a general introduction to the chemistry of these compounds see: (a) D. For a general introduction to the chemistry of these compounds see: (a) D. Lloyd, 'Non-benzenoid Conjugated Carbocyclic Compounds' Elsevier, Amsterdam, 1984; (b) F. Pietra, <u>Acc. Chem. Res.</u>, **1979**, <u>12</u>, 132; (c) F. Petra, <u>Chem. Rev.</u>, **1973**, <u>73</u>, 293; and references therein. (a) D.A. Evans, S.P. Tanis, and D.J. Hart, <u>J. Am. Chem. Soc.</u>, **1981**, <u>103</u>, 4813; (b) D.A. Evans, D.J. Hart, and P.M. Koelsch, <u>ibid.</u>, **1978**, <u>100</u>, 4953. I. Fleming 'Selected Organic Syntheses' p.183, John Wiley and Sons, London, 1973. K.T. Buck in "The Alkaloids" XXIII, Academic Press, 1984, Chap.5, p.301, and
- 2.
- 3. 4. references therein.
- J. Polonsky, J-C. Beloeil, T. Prauge, C. Pascard, H. Jacquemin, D.M.X. Donnelly, and P.T.M. Kenny, <u>Tetrahedron</u>, **1983**, 39, 2647.
 M.G. Banwell, <u>J. Chem. Soc.</u>, Chem. Commun., **1982**, 847. 5.
- Satisfactory spectral, microanalytical, and/or accurate mass data were obtained 7. for all new compounds or suitable derivatives thereof.
- (a) Prepared by the osmium tetroxide catalysed dihydroxylation (Tetrahedron Lett., 8. 1980, 21, 449) of the corresponding olefin. (b) This compound was prepared by conventional methods from known starting materials; experimental details will be published in a forthcoming full paper. A.J. Mancuso and D. Swern, <u>Synthesis</u>., **1981**, 165. J.F. Bagli, T. Bogri, B. Palameta, and M. St.-Jacques, <u>Can. J. Chem</u>., **1979**, <u>57</u>,
- 9.
- 10. 1949.
- 11.
- 12.
- T. Nozoe, S. Seto, S. Ebin, and S. Ito, <u>J. Am. Chem. Soc.</u>, **1951**, 73, 1895.
 K. Doi, <u>Bull. Chem. Soc. Jpn.</u>, **1962**, <u>35</u>, 67.
 H.O. House, 'Modern Synthetic Reactions', p.315, W.A. Benjamin, Inc., Menlo Park, 13. 1972.
- 14. T. Sato, Nippon Kagaku Zasski, 1959, 80 1340 (Chem. Abstr., 1961, 55, 4388h). 15. In contrast, methylation $[CH_2N_2$, $(CH_3CH_2)_20$, $20^{\circ}C]$ of the α -tropolone 25 affords a ca. 1:1 mixture of 30 and its regio-isomer.

(Received in UK 3 July 1985)